Гиіขтєр Кои̃ขєрт

 $\pi о ́ \lambda \varepsilon \mu \mathrm{o}$ а̀vєín $\omega \tau$.

 $\kappa \alpha ́ \tau \omega \dot{\alpha} \pi o ́ ~ \tau o ́ ~ \grave{\varepsilon} \xi$ оүк $\omega \mu \varepsilon$ vo $\pi \lambda \varepsilon \chi \tau o ́$.

[^0]

 $\beta \rho i \sigma \kappa \varepsilon \iota ~ \tau \eta ́ v ~ \pi \rho \varepsilon ́ \pi о v \sigma \alpha ~ \delta ı o ́ \rho \theta \omega \sigma \eta$.

 каí $\delta \varepsilon ́ ~ \chi \rho \varepsilon ı \alpha \zeta o ́ \tau \alpha v ~ v \alpha ́ ~ \pi \varepsilon \rho ı \mu \varepsilon ́ v \varepsilon ı ~ к \alpha v \varepsilon i ́ ̧ ~ \mu i ́ \alpha ~ ఱ ̈ \rho \alpha . ~$

[^1]

 iठıóp $\rho \cup \theta \mu$ о.

へoıóv:

 mıó кадд́д.

Гкі̀тєр Koũvєрт

[^0]:

 $\tau \eta \dot{\lambda i} \mu \vee \eta$ M $\boldsymbol{\prime}$ о́v $\tau \zeta \varepsilon$).

[^1]:

 тои́ $\lambda เ v \varepsilon \varsigma ~ к о \cup \rho \tau i v \varepsilon \varsigma ~ \pi \alpha \rho \alpha \theta \cup \rho o ́ \varphi \cup \lambda \lambda o v, ~ \mu \alpha \gamma \alpha \zeta \iota \alpha, ~ \pi o ́ \rho \tau \varepsilon \varsigma, ~ \pi u ́ \lambda \varepsilon \varsigma, ~ \theta u ́ \rho \varepsilon \varsigma, ~ \varepsilon i ́ \sigma o ́ \delta o u \varsigma, ~$

